题目:
数列2,5,10,17,26,……的通项公式为
答案
解:令数列an,且a1=2,a2=5,a3=10,a4=17,a5=26。 那么可知,a5=26=17+9=17+2×5-1=a4+2×5-1, a4=17=10+7=10+2×4-1=a3+2×4-1, a3=10=5+5=5+2×3-1=a2+2×3-1, a2=5=2+3=2+2×2-1=a1+2×2-1, 所以可得,an=an-1+(2n-1) 则an=an-1+(2n-1)=an-2+(2(n-1)-1)+(2n-1)=…=a1+(2×2-1)+(2×3-1)+…+(2(n-1)-1)+(2n-1) =2+(2×2-1)+(2×3-1)+…+(2(n-1)-1)+(2n-1) =2n+n(n-1)-(n-1) =n^2+1 即数列2,5,10,17,26的通项式为n^2+1,且该数列为递增数列。